8 research outputs found

    Towards a context aware multipath-TCP

    Get PDF
    Multi-homing has become ubiquitous in the mobile domain. Despite this, mobile devices are not yet capable of fully realizing the potential of the increasing variety and availability of network resources. Multipath-TCP (MPTCP) is one of the most prominent technologies for multi-homed mobile devices, that is able to effectively tackle both resource pooling and mobility. Despite the success of MPTCP we believe that the implementation can be enhanced for the mobile domain, by increasing the granularity of control a device has over how its network interfaces are used. In this paper we present and evaluate MPTCP - Context Aware (MPTCP-CA), which introduces a policy oriented approach to the management and control of MPTCP connections. Our evaluation demonstrates three use cases that leverage context awareness to improve the utilization of multiple network interfaces with respect to the users requirements

    Cooperative resource pooling in multihomed mobile networks

    Get PDF
    The ubiquity of multihoming amongst mobile devices presents a unique opportunity for users to co-operate, sharing their available Internet connectivity, forming multihomed mobile networks on demand. This model provides users with vast potential to increase the quality of service they receive. Despite this, such mobile networks are typically underutilized and overly restrictive, as additional Internet connectivity options are predominantly ignored and selected gateways are both immutable and incapable of meeting the demand of the mobile network. This presents a number of research challenges, as users look to maximize their quality of experience, while balancing both the financial cost and power consumption associated with utilizing a diverse set of heterogeneous Internet connectivity options. In this thesis we present a novel architecture for mobile networks, the contribution of which is threefold. Firstly, we ensure the available Internet connectivity is appropriately advertised, building a routing overlay which allows mobile devices to access any available network resource. Secondly, we leverage the benefits of multipath communications, providing the mobile device with increased throughput, additional resilience and seamless mobility. Finally, we provide a multihomed framework, enabling policy driven network resource management and path selection on a per application basis. Policy driven resource management provides a rich and descriptive approach, allowing the context of the network and the device to be taken into account when making routing decisions at the edge of the Internet. The aim of this framework, is to provide an efficient and flexible approach to the allocation of applications to the optimal network resource, no matter where it resides in a mobile network. Furthermore, we investigate the benefits of path selection, facilitating the policy framework to choose the optimal network resource for specific applications. Through our evaluation, we prove that our approach to advertising Internet connectivity in a mobile network is both efficient and capable of increasing the utilization of the available network capacity. We then demonstrate that our policy driven approach to resource management and path selection can further improve the user’s quality of experience, by tailoring network resource usage to meet their specific needs

    COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records

    Get PDF
    BACKGROUND: Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes from nationwide linked electronic health records (EHR) using an extensible framework. METHODS: In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FINDINGS: Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1. INTERPRETATION: Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources. FUNDING: British Heart Foundation Data Science Centre, led by Health Data Research UK

    The SNOE Spacecraft: Integration, Test, Launch, Operation, and On-orbit Performance

    Get PDF
    The Student Nitric Oxide Explorer (SNOE) was launched on 26 February 1998. Its objectives are to measure nitric oxide density in the lower thermosphere, to analyze the solar and auroral fluxes that create it and cause its variation, and to demonstrate the feasibility of low-cost, University-based missions that include a high degree of student participation. The SNOE spacecraft and instruments were designed and built at the University of Colorado Laboratory for Atmospheric and Space Physics (CU/LASP). It travels in a 580 x 550 km, sunsynchronous orbit with a 10:30 AM ascending node. It spins at 5 rpm with the spin axis normal to the orbit plane. It carries three instruments: An ultraviolet spectrometer to measure nitric oxide altitude profiles on the limb, a two-channel ultraviolet photometer to measure auroral emissions in the nadir, and a five-channel solar soft X-ray photometer. An experimental GPS receiver is also included for orbit determination. This paper describes completion of the SNOE project through integration and test, launch site operations at Vandenberg AFB, the early-orbit campaign, and routine mission and science operations. The on-orbit performance of the spacecraft subsystems is assessed, including the passive thermal regulation system as well as the electrical and computer systems. SNOE is in good health and appears to be headed for a long and successful mission
    corecore